Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2006, Issue 3, Pages 101–118 (Mi adm274)  

RESEARCH ARTICLE

Arithmetic properties of exceptional lattice paths

Wolfgang Rump

Institut for Algebra und Zahlentheorie, Universitat, Stuttgart, Pfaffenwaldring 57, D–70550 Stuttgart, Germany
Abstract: For a fixed real number $\rho>0$, let $L$ be an affine line of slope $\rho^{-1}$ in $\mathbb{R}^2$. We show that the closest approximation of $L$ by a path $P$ in $\mathbb{Z}^2$ is unique, except in one case, up to integral translation. We study this exceptional case. For irrational $\rho$, the projection of $P$ to $L$ yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If $\rho$ satisfies an equation $x^2=mx+1$ with $m\in\mathbb{Z}$, both quasicrystals are mapped to each other by a substitution rule. For rational $\rho$, we characterize the periodic parts of $P$ by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras $H_{\rho}(K)$ over a field $K$ introduced in a recent proof of a conjecture of Roiter.
Keywords: Lattice path, uniform enumeration, quasicrystal.
Received: 20.04.2005
Revised: 19.11.2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Wolfgang Rump, “Arithmetic properties of exceptional lattice paths”, Algebra Discrete Math., 2006, no. 3, 101–118
Citation in format AMSBIB
\Bibitem{Rum06}
\by Wolfgang~Rump
\paper Arithmetic properties of exceptional lattice paths
\jour Algebra Discrete Math.
\yr 2006
\issue 3
\pages 101--118
\mathnet{http://mi.mathnet.ru/adm274}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2321937}
\zmath{https://zbmath.org/?q=an:1117.05019}
Linking options:
  • https://www.mathnet.ru/eng/adm274
  • https://www.mathnet.ru/eng/adm/y2006/i3/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:939
    Full-text PDF :109
    References:6
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025