Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2016, Volume 21, Issue 1, Pages 1–17 (Mi adm550)  

RESEARCH ARTICLE

Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism

Eugenija Bondarab

a Luhansk Taras Shevchenko National University
b Ural Federal University
References:
Abstract: Let $\mathscr{T}_n$ be the symmetric semigroup of full transformations on a finite set with $n$ elements. In the paper we give a counting formula for the number of $\mathscr{L}$-cross-sections of $\mathscr{T}_n$ and classify all $\mathscr{L}$-cross-sections of $\mathscr{T}_n$ up to isomorphism.
Keywords: symmetric semigroup, cross-section, Green's relations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1999.2014/K
Ural Federal University named after the First President of Russia B. N. Yeltsin
The author acknowledges support from the Ministry of Education and Science of the Russian Federation, project no. 1.1999.2014/K, and the Competitiveness Program of Ural Federal University.
Received: 04.06.2014
Revised: 08.10.2015
Bibliographic databases:
Document Type: Article
MSC: 20M20
Language: English
Citation: Eugenija Bondar, “Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism”, Algebra Discrete Math., 21:1 (2016), 1–17
Citation in format AMSBIB
\Bibitem{Bon16}
\by Eugenija~Bondar
\paper Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism
\jour Algebra Discrete Math.
\yr 2016
\vol 21
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/adm550}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3537481}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382847600002}
Linking options:
  • https://www.mathnet.ru/eng/adm550
  • https://www.mathnet.ru/eng/adm/v21/i1/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025