|
|
Algebra and Discrete Mathematics, 2018, Volume 25, Issue 2, Pages 165–176
(Mi adm652)
|
|
|
|
RESEARCH ARTICLE
Enumeration of strong dichotomy patterns
Octavio A. Agustín-Aquino Universidad Tecnológica de la Mixteca, Instituto de Física y Matemáticas, Carretera a Acatlima Km. 2.5, Huajuapan de León, Oaxaca, México, C.P. 69000
Abstract:
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of $\mathbb{Z}_{2k}$ with respect to the action of $\operatorname{Aff}(\mathbb{Z}_{2k})$ and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
Keywords:
strong dichotomy pattern, Pólya-Redfield theory, cyclic sieving.
Received: 03.02.2016 Revised: 01.02.2018
Citation:
Octavio A. Agustín-Aquino, “Enumeration of strong dichotomy patterns”, Algebra Discrete Math., 25:2 (2018), 165–176
Linking options:
https://www.mathnet.ru/eng/adm652 https://www.mathnet.ru/eng/adm/v25/i2/p165
|
|