|
|
Algebra and Discrete Mathematics, 2018, Volume 25, Issue 2, Pages 188–199
(Mi adm654)
|
|
|
|
RESEARCH ARTICLE
On $k$-graceful labeling of pendant edge extension of complete bipartite graphs
Soumya Bhoumik, Sarbari Mitra Fort Hays State University, 600 Park St, Hays, KS, USA
Abstract:
For any two positive integers $m,n$, we denote the graph $K_{m,n}\odot K_1$ by $G$. Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a $k$-graceful graph for $k \ge 2$. In this paper we prove his conjecture for $n\le m < n^2+\lfloor\frac{k}{n}\rfloor+ r$.
Keywords:
$k$-graceful labeling, complete bipartite graph, corona, $1$-crown.
Received: 19.05.2016
Citation:
Soumya Bhoumik, Sarbari Mitra, “On $k$-graceful labeling of pendant edge extension of complete bipartite graphs”, Algebra Discrete Math., 25:2 (2018), 188–199
Linking options:
https://www.mathnet.ru/eng/adm654 https://www.mathnet.ru/eng/adm/v25/i2/p188
|
|