Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2019, Volume 27, Issue 2, Pages 202–211 (Mi adm703)  

RESEARCH ARTICLE

The classification of serial posets with the non-negative quadratic Tits form being principal

Vitalij M. Bondarenkoa, Marina V. Styopochkinab

a Institute of Mathematics, Tereshchenkivska str., 3, 01024 Kyiv, Ukraine
b Zhytomyr National Agroecological Univ., Staryi Boulevard, 7, 10008 Zhytomyr, Ukraine
References:
Abstract: Using (introduced by the first author) the method of (min, max)-equivalence, we classify all serial principal posets, i.e. the posets $S$ satisfying the following conditions: (1) the quadratic Tits form $q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}$ of $S$ is non-negative; (2) $\operatorname{Ker}q_S(z):=\{t\mid q_S(t)=0\}$ is an infinite cyclic group (equivalently, the corank of the symmetric matrix of $q_S(z)$ is equal to $1$); (3) for any $m\in\mathbb{N}$, there is a poset $S(m)\supset S$ such that $S(m)$ satisfies (1), (2) and $|S(m)\setminus S|=m$.
Keywords: quiver, serial poset, principal poset, quadratic Tits form, semichain, minimax equivalence, one-side and two-side sums, minimax sum.
Received: 14.03.2019
Document Type: Article
MSC: 15B33, 15A30
Language: English
Citation: Vitalij M. Bondarenko, Marina V. Styopochkina, “The classification of serial posets with the non-negative quadratic Tits form being principal”, Algebra Discrete Math., 27:2 (2019), 202–211
Citation in format AMSBIB
\Bibitem{BonSty19}
\by Vitalij~M.~Bondarenko, Marina~V.~Styopochkina
\paper The classification of serial posets with the non-negative quadratic Tits form being principal
\jour Algebra Discrete Math.
\yr 2019
\vol 27
\issue 2
\pages 202--211
\mathnet{http://mi.mathnet.ru/adm703}
Linking options:
  • https://www.mathnet.ru/eng/adm703
  • https://www.mathnet.ru/eng/adm/v27/i2/p202
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025