|
|
Algebra and Discrete Mathematics, 2019, Volume 28, Issue 1, Pages 20–28
(Mi adm711)
|
|
|
|
RESEARCH ARTICLE
CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
Eskander Ali, Ahed Hassoon Department of Mathematics, Tishreen University, Latakia, Syria
Abstract:
In this paper we prove that the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$ is CI-group, where $p$, $q$, $r$ are primes such that $q$ and $r$ divide $p-1$, and $r$ divides $q-1$.
Keywords:
CI-groups, Schur ring, wreath product.
Received: 20.06.2018 Revised: 20.07.2019
Citation:
Eskander Ali, Ahed Hassoon, “CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$”, Algebra Discrete Math., 28:1 (2019), 20–28
Linking options:
https://www.mathnet.ru/eng/adm711 https://www.mathnet.ru/eng/adm/v28/i1/p20
|
|