Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 30, Issue 2, Pages 282–289
DOI: https://doi.org/10.12958/adm1396
(Mi adm783)
 

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

On a product of two formational $\mathrm{tcc}$-subgroups

A. Trofimuk

Department of Mathematics, Gomel Francisk Skorina State University, Gomel 246019, Belarus
Full-text PDF (334 kB) Citations (1)
References:
Abstract: A subgroup $A$ of a group $G$ is called $\mathrm{tcc}$-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we consider a group $G=AB$ such that $A$ and $B$ are $\mathrm{tcc}$-subgroups in $G$. We prove that $G$ belongs to $\frak F$, when $A$ and $B$ belong to $\mathfrak F$ and $\mathfrak F$ is a saturated formation of soluble groups such that $\mathfrak U \subseteq \mathfrak F$. Here $\mathfrak U$ is the formation of all supersoluble groups.
Keywords: supersoluble group, totally permutable product, saturated formation, $\mathrm{tcc}$-permutable product, $\mathrm{tcc}$-subgroup.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research F19RM-071
This work was supported by the BRFFR (grant No. F19RM-071).
Received: 03.06.2019
Bibliographic databases:
Document Type: Article
MSC: 20D10
Language: English
Citation: A. Trofimuk, “On a product of two formational $\mathrm{tcc}$-subgroups”, Algebra Discrete Math., 30:2 (2020), 282–289
Citation in format AMSBIB
\Bibitem{Tro20}
\by A.~Trofimuk
\paper On a product of two formational $\mathrm{tcc}$-subgroups
\jour Algebra Discrete Math.
\yr 2020
\vol 30
\issue 2
\pages 282--289
\mathnet{http://mi.mathnet.ru/adm783}
\crossref{https://doi.org/10.12958/adm1396}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614510500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100240772}
Linking options:
  • https://www.mathnet.ru/eng/adm783
  • https://www.mathnet.ru/eng/adm/v30/i2/p282
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025