Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 2, Pages 21–33 (Mi al1093)  

Some remarks on simple alternative rings

K. A. Žhevlakov
Abstract: I. If $\mathcal{O}$ is a simple, commutative alternative ring then $\mathcal{O}$ is a field.
II. Let $\mathcal{O}$ be a simple alternative ring of characteristic not $2,3$, then
a) Jordan ring $\mathcal{O}^{(+)}$ is a simple ring.
b ) If $J$ is an ideal of Malcev ring $\mathcal{O}^{(-)}$ then either $J$ contains $[\mathcal{O},\mathcal{O}]$ or $J$ is contained in center $Z$ of $\mathcal{O}^{(-)}$. In particular, if $\mathcal{O}^{(-)}$ is not Lie ring then $\mathcal{O}^{(-)}/Z$ a simple Malcev ring.
Received: 21.03.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. A. Žhevlakov, “Some remarks on simple alternative rings”, Algebra i Logika. Sem., 6:2 (1967), 21–33
Citation in format AMSBIB
\Bibitem{Zhe67}
\by K.~A.~{\v Z}hevlakov
\paper Some remarks on simple alternative rings
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 2
\pages 21--33
\mathnet{http://mi.mathnet.ru/al1093}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=0219587}
Linking options:
  • https://www.mathnet.ru/eng/al1093
  • https://www.mathnet.ru/eng/al/v6/i2/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025