Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 3, Pages 9–11 (Mi al1102)  

The variety generated of the finite group

Yu. M. Gorčakov
Abstract: The purpose of this paper is to give the simple proof of the following theorem (if [I]): the product $\mathfrak{N}\mathfrak{M}$ of the non-trivial varieties $\mathfrak{N}$ and $\mathfrak{M}$ is generated by the finite group if and only if
a) $\mathfrak{N}$ and $\mathfrak{M}$ has non zero coprime exponents and
b) $\mathfrak{N}$ consists of the nilpotent groups and $\mathfrak{M}$ consists of the abelian groups.
References

1. A. L. Šmelkin, The wreath products and the group varieties, Isvestia Akademee Nauk USSR, ser.math., 29,N I (1965), 149–170.
Received: 10.04.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Gorčakov, “The variety generated of the finite group”, Algebra i Logika. Sem., 6:3 (1967), 9–11
Citation in format AMSBIB
\Bibitem{Gor67}
\by Yu.~M.~Gor{\v{c}}akov
\paper The variety generated of the finite group
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 3
\pages 9--11
\mathnet{http://mi.mathnet.ru/al1102}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=0218430}
Linking options:
  • https://www.mathnet.ru/eng/al1102
  • https://www.mathnet.ru/eng/al/v6/i3/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :47
    References:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025