Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 1, Pages 44–84 (Mi al117)  

This article is cited in 6 scientific papers (total in 6 papers)

Rogers Semilattices of Finite Partially Ordered Sets

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (395 kB) Citations (6)
References:
Abstract: It is proved that the principal sublattice of a Rogers semilattice of a finite partially ordered set is definable. For this goal to be met, we present a generalization of the Denisov theorem concerning extensions of embeddings of Lachlan semilattices to ideals of Rogers semilattices.
Keywords: Rogers semilattice, Lachlan semilattice, definability.
Received: 27.08.2005
Revised: 19.01.2006
English version:
Algebra and Logic, 2006, Volume 45, Issue 1, Pages 26–48
DOI: https://doi.org/10.1007/s10469-006-0004-9
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: Yu. L. Ershov, “Rogers Semilattices of Finite Partially Ordered Sets”, Algebra Logika, 45:1 (2006), 44–84; Algebra and Logic, 45:1 (2006), 26–48
Citation in format AMSBIB
\Bibitem{Ers06}
\by Yu.~L.~Ershov
\paper Rogers Semilattices of Finite Partially Ordered Sets
\jour Algebra Logika
\yr 2006
\vol 45
\issue 1
\pages 44--84
\mathnet{http://mi.mathnet.ru/al117}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2259476}
\zmath{https://zbmath.org/?q=an:1119.03036}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 1
\pages 26--48
\crossref{https://doi.org/10.1007/s10469-006-0004-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544458471}
Linking options:
  • https://www.mathnet.ru/eng/al117
  • https://www.mathnet.ru/eng/al/v45/i1/p44
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025