Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 6, Pages 751–762 (Mi al139)  

This article is cited in 5 scientific papers (total in 5 papers)

Frobenius Pairs with Perfect Involutions

A. I. Sozutov
Full-text PDF (169 kB) Citations (5)
References:
Abstract: An involution $i$ of a group $G$ is said to be perfect in $G$ if any two non-commuting involutions in $i^G$ are conjugated by an involution in the same class. We generalize theorems of Jordan and M. Hall concerning sharply doubly transitive groups, and the Shunkov theorem on periodic groups with a finite isolated subgroup of even order.
Keywords: group, sharply doubly transitive group, periodic group, involution, Frobenius pair.
Received: 25.01.2005
English version:
Algebra and Logic, 2005, Volume 44, Issue 6, Pages 422–428
DOI: https://doi.org/10.1007/s10469-005-0039-3
Bibliographic databases:
UDC: 512. 54
Language: Russian
Citation: A. I. Sozutov, “Frobenius Pairs with Perfect Involutions”, Algebra Logika, 44:6 (2005), 751–762; Algebra and Logic, 44:6 (2005), 422–428
Citation in format AMSBIB
\Bibitem{Soz05}
\by A.~I.~Sozutov
\paper Frobenius Pairs with Perfect Involutions
\jour Algebra Logika
\yr 2005
\vol 44
\issue 6
\pages 751--762
\mathnet{http://mi.mathnet.ru/al139}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2213304}
\zmath{https://zbmath.org/?q=an:1104.20036}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 6
\pages 422--428
\crossref{https://doi.org/10.1007/s10469-005-0039-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644447231}
Linking options:
  • https://www.mathnet.ru/eng/al139
  • https://www.mathnet.ru/eng/al/v44/i6/p751
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025