Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 4, Pages 391–410 (Mi al189)  

Vector Lattices on a Set of Two Generators

N. V. Bayanova, N. Ya. Medvedev
References:
Abstract: It is proved that the center of an automorphism group $\operatorname{Aut}(FVL2)$ of a free vector lattice $FVL2$ on a set of two free generators is isomorphic to a multiplicative group of positive reals. It is shown that the free vector lattice $FVL2$ has an isomorphic representation by continuous piecewise linear functions of the real line; as a consequence, the ideal lattice and the root system for rectifying ideals in $FVL2$ are amply described. Similar results are obtained for a free vector lattice $FVL_Q2$ generated by two elements over a field of rational numbers.
Keywords: free vector lattice, center of an automorphism group, ideal lattice, root system.
Received: 17.10.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 4, Pages 217–227
DOI: https://doi.org/10.1023/A:1020152420386
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: N. V. Bayanova, N. Ya. Medvedev, “Vector Lattices on a Set of Two Generators”, Algebra Logika, 41:4 (2002), 391–410; Algebra and Logic, 41:4 (2002), 217–227
Citation in format AMSBIB
\Bibitem{BayMed02}
\by N.~V.~Bayanova, N.~Ya.~Medvedev
\paper Vector Lattices on a~Set of Two Generators
\jour Algebra Logika
\yr 2002
\vol 41
\issue 4
\pages 391--410
\mathnet{http://mi.mathnet.ru/al189}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1950573}
\zmath{https://zbmath.org/?q=an:1018.06014}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 4
\pages 217--227
\crossref{https://doi.org/10.1023/A:1020152420386}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249090053}
Linking options:
  • https://www.mathnet.ru/eng/al189
  • https://www.mathnet.ru/eng/al/v41/i4/p391
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025