Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 3, Pages 251–261 (Mi al219)  

This article is cited in 4 scientific papers (total in 4 papers)

Generating Elements for Groups of the Form $F/R'$

Ch. K. Guptaa, E. I. Timoshenko

a University of Manitoba
Full-text PDF (932 kB) Citations (4)
Abstract: Necessary and sufficient conditions are specified for a group of a specified type to be generated by its given elements ($F$ is a free product). Using these conditions (and relying essentially on the Shmel'kin embedding), we establish the criterion of being primitive for metabelian products of Abelian groups. A result by Birman and the primitivity criterion for free metabelian groups are generalized.
Keywords: metabelian products of Abelian groups, free metabelian group, generator.
Received: 18.11.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 3, Pages 137–143
DOI: https://doi.org/10.1023/A:1010266417056
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: Ch. K. Gupta, E. I. Timoshenko, “Generating Elements for Groups of the Form $F/R'$”, Algebra Logika, 40:3 (2001), 251–261; Algebra and Logic, 40:3 (2001), 137–143
Citation in format AMSBIB
\Bibitem{GupTim01}
\by Ch.~K.~Gupta, E.~I.~Timoshenko
\paper Generating Elements for Groups of the Form $F/R'$
\jour Algebra Logika
\yr 2001
\vol 40
\issue 3
\pages 251--261
\mathnet{http://mi.mathnet.ru/al219}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1857882}
\zmath{https://zbmath.org/?q=an:1003.20030}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 3
\pages 137--143
\crossref{https://doi.org/10.1023/A:1010266417056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249088176}
Linking options:
  • https://www.mathnet.ru/eng/al219
  • https://www.mathnet.ru/eng/al/v40/i3/p251
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025