Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 2, Pages 210–230
DOI: https://doi.org/10.33048/alglog.2021.60.207
(Mi al2659)
 

This article is cited in 2 scientific papers (total in 2 papers)

Universal functions and $\Sigma_{\omega}$-bounded structures

A. N. Khisamiev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (278 kB) Citations (2)
References:
Abstract: We introduce the notion of a $\Sigma_{\omega}$-bounded structure and specify a necessary and sufficient condition for a universal $\Sigma$-function to exist in a hereditarily finite superstructure over such a structure, for the class of all unary partial $\Sigma$-functions assuming values in the set $\omega$ of natural ordinals. Trees and equivalences are exemplified in hereditarily finite superstructures over which there exists no universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions, but there exists a universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions assuming values in the set $\omega$ of natural ordinals. We construct a tree $T$ of height $5$ such that the hereditarily finite superstructure ${\mathbb {HF}}(T)$ over $T$ has no universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions assuming values $0, 1$ only.
Keywords: admissible set, $\Sigma$-function, universal $\Sigma$-function hereditarily finite superstructure, tree.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0003
Received: 08.04.2020
Revised: 24.08.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 2, Pages 139–153
DOI: https://doi.org/10.1007/s10469-021-09636-w
Bibliographic databases:
Document Type: Article
UDC: 512.540+510.5
Language: Russian
Citation: A. N. Khisamiev, “Universal functions and $\Sigma_{\omega}$-bounded structures”, Algebra Logika, 60:2 (2021), 210–230; Algebra and Logic, 60:2 (2021), 139–153
Citation in format AMSBIB
\Bibitem{Khi21}
\by A.~N.~Khisamiev
\paper Universal functions and $\Sigma_{\omega}$-bounded structures
\jour Algebra Logika
\yr 2021
\vol 60
\issue 2
\pages 210--230
\mathnet{http://mi.mathnet.ru/al2659}
\crossref{https://doi.org/10.33048/alglog.2021.60.207}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 2
\pages 139--153
\crossref{https://doi.org/10.1007/s10469-021-09636-w}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697756800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115197539}
Linking options:
  • https://www.mathnet.ru/eng/al2659
  • https://www.mathnet.ru/eng/al/v60/i2/p210
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025