Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 4, Pages 424–442
DOI: https://doi.org/10.33048/alglog.2022.61.403
(Mi al2720)
 

This article is cited in 2 scientific papers (total in 2 papers)

A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups

Zh. Wanga, A. V. Vasil'evba, M. A. Grechkoseevab, A. Kh. Zhurtovc

a School of Science, Hainan Univ., Haikou, Hainan, P. R. CHINA
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Kabardino-Balkar State University, Nal'chik
Full-text PDF (999 kB) Citations (2)
References:
DOI: https://doi.org/10.33048/alglog.2022.61.403
Abstract: The spectrum $\omega(G)$ of a finite group $G$ is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group $G$, there are four different primes such that $\omega(G)$ contains all their pairwise products but not a product of any three of these numbers, then $G$ is nonsolvable. Using this result, we show that for $q\geqslant 8$ and $q\neq 32$, the direct square $Sz(q)\times Sz(q)$ of the simple exceptional Suzuki group $Sz(q)$ is uniquely characterized by its spectrum in the class of finite groups, while for $Sz(32)\times Sz(32)$, there are exactly four finite groups with the same spectrum.
Keywords: criterion of nonsolvability, simple exceptional group, element orders, recognition by spectrum.
Funding agency Grant number
National Natural Science Foundation of China 12171126
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
Supported by the National Natural Science Foundation of China (NSFC), grant No. 12171126. (A. V. Vasil’ev) Supported by the Program of Fundamental Research RAS, project FWNF-2022-0002. (A. V. Vasil’ev and M. A. Grechkoseeva)
Received: 01.02.2022
Revised: 29.03.2023
English version:
Algebra and Logic, 2022, Volume 61, Issue 4, Pages 288–300
DOI: https://doi.org/10.1007/s10469-023-09697-z
Document Type: Article
UDC: 512.542
Language: Russian
Citation: Zh. Wang, A. V. Vasil'ev, M. A. Grechkoseeva, A. Kh. Zhurtov, “A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups”, Algebra Logika, 61:4 (2022), 424–442; Algebra and Logic, 61:4 (2022), 288–300
Citation in format AMSBIB
\Bibitem{WanVasGre22}
\by Zh.~Wang, A.~V.~Vasil'ev, M.~A.~Grechkoseeva, A.~Kh.~Zhurtov
\paper A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups
\jour Algebra Logika
\yr 2022
\vol 61
\issue 4
\pages 424--442
\mathnet{http://mi.mathnet.ru/al2720}
\transl
\jour Algebra and Logic
\yr 2022
\vol 61
\issue 4
\pages 288--300
\crossref{https://doi.org/10.1007/s10469-023-09697-z}
Linking options:
  • https://www.mathnet.ru/eng/al2720
  • https://www.mathnet.ru/eng/al/v61/i4/p424
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025