Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 6, Pages 706–719
DOI: https://doi.org/10.33048/alglog.2022.61.603
(Mi al2738)
 

This article is cited in 2 scientific papers (total in 2 papers)

Families of permutations and ideals of Turing degrees

A. S. Morozova, V. G. Puzarenkoa, M. Kh. Faizrahmanovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Kazan (Volga Region) Federal University
Full-text PDF (195 kB) Citations (2)
References:
DOI: https://doi.org/10.33048/alglog.2022.61.603
Abstract: Families ${\mathcal P}_{\mathrm I}$ consisting of permutations of the natural numbers $\omega$ whose degrees belong to an ideal $\mathrm I$ of Turing degrees, as well as their jumps ${\mathcal P}'_{\mathrm I}$, are studied. For any countable Turing ideal $\mathrm I$, the degree spectra of families ${\mathcal P}_{\mathrm I}$ and their jumps ${\mathcal P}'_{\mathrm I}$ are described. For some ideals $\mathrm I$ generated by c.e. degrees, the spectra of families ${\mathcal P}_{\mathrm I}$ are defined.
Keywords: computable permutation, family of permutations, jump, Turing degree, ideal of Turing degrees, degree spectra.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00300 А
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0012
075-02-2022-882
Russian Science Foundation 22-21-20024
Supported by RFBR (project No. 20-01-00300 A) and by the Ministry of Education and Science of Russia (base project No. FWNF-2022-0012). Supported by Mathematical Center in Akademgorodok, Agreement No. 075-15-2022-281. The work was carried out as part of the developmental program for Scientific-Educational Mathematical Center (SEMC) in Volga Federal District (Agreement No. 075-02-2022-882) and supported by Russian Science Foundation (project No. 22-21-20024).
Received: 19.04.2022
Revised: 13.10.2023
English version:
Algebra and Logic, 2022, Volume 61, Issue 6, Pages 481–490
DOI: https://doi.org/10.1007/s10469-023-09714-1
Document Type: Article
UDC: 510.5
Language: Russian
Citation: A. S. Morozov, V. G. Puzarenko, M. Kh. Faizrahmanov, “Families of permutations and ideals of Turing degrees”, Algebra Logika, 61:6 (2022), 706–719; Algebra and Logic, 61:6 (2022), 481–490
Citation in format AMSBIB
\Bibitem{MorPuzFai22}
\by A.~S.~Morozov, V.~G.~Puzarenko, M.~Kh.~Faizrahmanov
\paper Families of permutations and ideals of Turing degrees
\jour Algebra Logika
\yr 2022
\vol 61
\issue 6
\pages 706--719
\mathnet{http://mi.mathnet.ru/al2738}
\transl
\jour Algebra and Logic
\yr 2022
\vol 61
\issue 6
\pages 481--490
\crossref{https://doi.org/10.1007/s10469-023-09714-1}
Linking options:
  • https://www.mathnet.ru/eng/al2738
  • https://www.mathnet.ru/eng/al/v61/i6/p706
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025