Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 6, Pages 720–741
DOI: https://doi.org/10.33048/alglog.2022.61.604
(Mi al2739)
 

Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$

A. A. Onoprienko

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
DOI: https://doi.org/10.33048/alglog.2022.61.604
Abstract: The joint logic of problems and propositions ${\mathrm{QHC}}$ introduced by S. A. Melikhov, as well as intuitionistic modal logic ${\mathrm{QH4}}$, is studied. An immersion of these logics into classical first-order predicate logic is considered. An analog of the Löwenheim–Skolem theorem on the existence of countable elementary submodels for ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$ is established.
Keywords: nonclassical logics, Kripke semantics, translation.
Funding agency Grant number
Russian Science Foundation 21-18-00195
Foundation for the Development of Theoretical Physics and Mathematics BASIS
A. A. Onoprienko Supported by Russian Science Foundation, project No. 21-18-00195. The author is a fellowship holder of the Theoretical Physics and Mathematics Advancement Foundation “BASIS”.
Received: 15.05.2022
Revised: 13.10.2023
English version:
Algebra and Logic, 2022, Volume 61, Issue 6, Pages 491–505
DOI: https://doi.org/10.1007/s10469-023-09715-0
Document Type: Article
UDC: 510.53
Language: Russian
Citation: A. A. Onoprienko, “Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$”, Algebra Logika, 61:6 (2022), 720–741; Algebra and Logic, 61:6 (2022), 491–505
Citation in format AMSBIB
\Bibitem{Ono22}
\by A.~A.~Onoprienko
\paper Cardinality reduction theorem for logics ${\mathrm{QHC}}$ and ${\mathrm{QH4}}$
\jour Algebra Logika
\yr 2022
\vol 61
\issue 6
\pages 720--741
\mathnet{http://mi.mathnet.ru/al2739}
\transl
\jour Algebra and Logic
\yr 2022
\vol 61
\issue 6
\pages 491--505
\crossref{https://doi.org/10.1007/s10469-023-09715-0}
Linking options:
  • https://www.mathnet.ru/eng/al2739
  • https://www.mathnet.ru/eng/al/v61/i6/p720
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025