|
Algebra i logika, 2023, Volume 62, Number 2, Pages 205–218 DOI: https://doi.org/10.33048/alglog.2023.62.203
(Mi al2757)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution
R. I. Zhukov, A. V. Greshnov Novosibirsk State University
DOI:
https://doi.org/10.33048/alglog.2023.62.203
Abstract:
For a $5$-dimensional $2$-step Carnot group $G_{3,2}$ with a codimension $2$ horizontal distribution, we prove that any two points $u,v\in G_{3,2}$ can be joined on it by a horizontal broken line consisting of at most three segments. A multi-dimensional generalization of this result is given.
Keywords:
Carnot group, codimension horizontal distribution, horizontal broken line.
Received: 27.09.2022 Revised: 31.01.2024
Citation:
R. I. Zhukov, A. V. Greshnov, “Horizontal joinability on $5$-dimensional $2$-step Carnot groups with a codimension $2$ horizontal distribution”, Algebra Logika, 62:2 (2023), 205–218; Algebra and Logic, 62:2 (2023), 137–147
Linking options:
https://www.mathnet.ru/eng/al2757 https://www.mathnet.ru/eng/al/v62/i2/p205
|
|