Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 4, Pages 524–551
DOI: https://doi.org/10.33048/alglog.2023.62.405
(Mi al2775)
 

Projections of finite rings

S. S. Korobkov

Urals State Pedagogical University, Ekaterinburg
References:
DOI: https://doi.org/10.33048/alglog.2023.62.405
Abstract: Let $R$ and $R^{\varphi}$ be associative rings with isomorphic subring lattices, and $\varphi$ be a lattice isomorphism (or else a projection) of the ring $R$ onto the ring $R^{\varphi}$. We call $R^{\varphi}$ the projective image of a ring $R$ and call $R$ itself the projective preimage of a ring $R^{\varphi}$. The main result of the first part of the paper is Theorem 5, which proves that the projective image $R^{\varphi}$ of a one-generated finite $p$-ring $R$ is also one-generated if $R^{\varphi}$ at the same time is itself a $p$-ring. In the second part, we continue studying projections of matrix rings. The main result of this part is Theorems 6 and 7, which prove that if $R=M_n(K)$ is the ring of all square matrices of order $n$ over a finite ring $K$ with identity, and $\varphi$ is a projection of the ring $R$ onto the ring $R^{\varphi}$, then $R^{\varphi}=M_n(K')$, where $K'$ is a ring with identity, lattice-isomorphic to the ring $K$.
Keywords: one-generated finite rings, matrix rings, lattice isomorphisms of associative rings.
Received: 19.01.2023
Revised: 19.07.2024
English version:
Algebra and Logic, 2023, Volume 62, Issue 4, Pages 353–371
DOI: https://doi.org/10.1007/s10469-024-09750-5
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Projections of finite rings”, Algebra Logika, 62:4 (2023), 524–551; Algebra and Logic, 62:4 (2023), 353–371
Citation in format AMSBIB
\Bibitem{Kor23}
\by S.~S.~Korobkov
\paper Projections of finite rings
\jour Algebra Logika
\yr 2023
\vol 62
\issue 4
\pages 524--551
\mathnet{http://mi.mathnet.ru/al2775}
\transl
\jour Algebra and Logic
\yr 2023
\vol 62
\issue 4
\pages 353--371
\crossref{https://doi.org/10.1007/s10469-024-09750-5}
Linking options:
  • https://www.mathnet.ru/eng/al2775
  • https://www.mathnet.ru/eng/al/v62/i4/p524
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :129
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025