Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 5, Pages 665–691
DOI: https://doi.org/10.33048/alglog.2023.62.505
(Mi al2782)
 

This article is cited in 1 scientific paper (total in 1 paper)

Wreath products of semigroups and Plotkin's problem

A. N. Shevlyakov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (258 kB) Citations (1)
References:
DOI: https://doi.org/10.33048/alglog.2023.62.505
Abstract: We prove that the wreath product $C=A\wr B$ of a semigroup $A$ with zero and an infinite cyclic semigroup $B$ is ${\mathbf{q}_\omega}$-compact (logically Noetherian). Our result partially solves B. I. Plotkin`s problem for wreath products.
Keywords: universal algebraic geometry, semigroup, wreath product.
Funding agency Grant number
Russian Science Foundation 22-11-20019
Supported by Russian Science Foundation, grant No. 22-11-20019.
Received: 11.05.2023
Revised: 28.08.2024
English version:
Algebra and Logic, 2023, Volume 62, Issue 5, Pages 448–467
DOI: https://doi.org/10.1007/s10469-024-09757-y
Document Type: Article
UDC: 512.53
Language: Russian
Citation: A. N. Shevlyakov, “Wreath products of semigroups and Plotkin's problem”, Algebra Logika, 62:5 (2023), 665–691; Algebra and Logic, 62:5 (2023), 448–467
Citation in format AMSBIB
\Bibitem{She23}
\by A.~N.~Shevlyakov
\paper Wreath products of semigroups and Plotkin's problem
\jour Algebra Logika
\yr 2023
\vol 62
\issue 5
\pages 665--691
\mathnet{http://mi.mathnet.ru/al2782}
\transl
\jour Algebra and Logic
\yr 2023
\vol 62
\issue 5
\pages 448--467
\crossref{https://doi.org/10.1007/s10469-024-09757-y}
Linking options:
  • https://www.mathnet.ru/eng/al2782
  • https://www.mathnet.ru/eng/al/v62/i5/p665
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025