Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2023, Volume 62, Number 6, Pages 742–761
DOI: https://doi.org/10.33048/alglog.2023.62.603
(Mi al2786)
 

Levi classes of quasivarieties of nilpotent groups of class at most two

S. A. Shakhova

Altai State University, Barnaul
References:
DOI: https://doi.org/10.33048/alglog.2023.62.603
Abstract: A Levi class $L(\mathcal{M})$ generated by a class $\mathcal{M}$ of groups is the class of all groups in which the normal closure of every cyclic subgroup belongs to $\mathcal{M}$. Let $p$ be a prime and $p\neq 2$, let $H_{p}$ be a free group of rank $2$ in the variety of nilpotent groups of class at most $2$ with commutator subgroup of exponent $p$, and let $qH_{p}$ be the quasivariety generated by the group $H_{p}$. It is shown that there exists a set of quasivarieties $\mathcal{M}$ of cardinality continuum such that $L(\mathcal{M})=L(qH_{p})$. Let $s$ be a natural number, $s\geq 2$. We specify a system of quasi-identities defining $L(q(H_{p}, Z_{p^{s}}))$, and prove that there exists a set of quasivarieties $\mathcal{M}$ of cardinality continuum such that $L(\mathcal{M})=L(q(H_{p}, Z_{p^{s}}))$, where $Z_{p^{s}}$ is a cyclic group of order $p^{s}$; $q(H_{p}, Z_{p^{s}})$ is the quasivariety generated by the groups $H_{p}$ and $Z_{p^{s}}$.
Keywords: quasivariety, Levi class, nilpotent group.
Received: 01.12.2022
Revised: 02.12.2024
English version:
Algebra and Logic, 2024, Volume 62, Issue 6, Pages 501–515
DOI: https://doi.org/10.1007/s10469-024-09761-2
Document Type: Article
UDC: 512.54.01
Language: Russian
Citation: S. A. Shakhova, “Levi classes of quasivarieties of nilpotent groups of class at most two”, Algebra Logika, 62:6 (2023), 742–761; Algebra and Logic, 62:6 (2024), 501–515
Citation in format AMSBIB
\Bibitem{Sha23}
\by S.~A.~Shakhova
\paper Levi classes of quasivarieties of nilpotent groups of class at most two
\jour Algebra Logika
\yr 2023
\vol 62
\issue 6
\pages 742--761
\mathnet{http://mi.mathnet.ru/al2786}
\transl
\jour Algebra and Logic
\yr 2024
\vol 62
\issue 6
\pages 501--515
\crossref{https://doi.org/10.1007/s10469-024-09761-2}
Linking options:
  • https://www.mathnet.ru/eng/al2786
  • https://www.mathnet.ru/eng/al/v62/i6/p742
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025