|
Algebra i logika, 2023, Volume 62, Number 6, Pages 762–785 DOI: https://doi.org/10.33048/alglog.2023.62.604
(Mi al2787)
|
|
|
|
Existence of independent quasi-equational bases. II
M. V. Schwidefsky Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
DOI:
https://doi.org/10.33048/alglog.2023.62.604
Abstract:
If a certain condition holds for a quasivariety $\mathbf{K}$ then $\mathbf{K}$ contains continuum many subquasivarieties having a finitely partitionable $\omega$-independent quasi-equational basis relative to $\mathbf{K}$. This is true, in particular, for each almost $ff$-universal quasivariety $\mathbf{K}$.
Keywords:
quasivariety, independent quasi-equational basis, $ff$-universal quasivariety.
Received: 22.01.2023 Revised: 02.12.2024
Citation:
M. V. Schwidefsky, “Existence of independent quasi-equational bases. II”, Algebra Logika, 62:6 (2023), 762–785; Algebra and Logic, 62:6 (2024), 516–531
Linking options:
https://www.mathnet.ru/eng/al2787 https://www.mathnet.ru/eng/al/v62/i6/p762
|
|