|
Algebra i logika, 2024, Volume 63, Number 3, Pages 235–247 DOI: https://doi.org/10.33048/alglog.2024.63.301
(Mi al2804)
|
|
|
|
Decidable models of Ehrenfeucht theories
P. E. Alaevab, E. I. Khlestovab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
DOI:
https://doi.org/10.33048/alglog.2024.63.301
Abstract:
We study countable models of Ehrenfeucht theories, i.e., complete theories with a finite number of countable models, strictly larger than 1. The notion of a primely generated model is introduced. It is proved that if all complete types of an Ehrenfeucht theory have arithmetic complexity, then any of the primely generated models of the theory possesses an arithmetically complex isomorphic presentation.
Keywords:
Ehrenfeucht theory, countable model, computable structure, decidable structure, arithmetic structure, arithmetic type.
Received: 21.02.2024 Revised: 11.04.2025
Citation:
P. E. Alaev, E. I. Khlestova, “Decidable models of Ehrenfeucht theories”, Algebra Logika, 63:3 (2024), 235–247; Algebra and Logic, 63:3 (2024), 155–163
Linking options:
https://www.mathnet.ru/eng/al2804 https://www.mathnet.ru/eng/al/v63/i3/p235
|
|