Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2024, Volume 63, Number 3, Pages 248–270
DOI: https://doi.org/10.33048/alglog.2024.63.302
(Mi al2805)
 

This article is cited in 2 scientific papers (total in 2 papers)

$CEA$-operators and the Ershov hierarchy. I

M. M. Arslanov, I. I. Batyrshin, M. M. Yamaleev

Kazan (Volga Region) Federal University
Full-text PDF (209 kB) Citations (2)
References:
DOI: https://doi.org/10.33048/alglog.2024.63.302
Abstract: We consider the relationship between the $CEA$-hierarchy and the Ershov hierarchy in $\Delta_2^0$ Turing degrees. A degree $\mathbf c$ is called a $CEA(\mathbf a)$ if ${\mathbf c}$ is computably enumerable in ${\mathbf a}$, and $\mathbf a\leq\mathbf c$. Soare and Stob [Logic colloquium '81, Proc. Herbrand Symp. (Marseille, 1981) (Stud. Logic Found. Math., 107), North-Hollad, 1982, 299—324] proved that for a noncomputable low c.e. degree ${\mathbf a}$ there exists a $CEA(\mathbf a)$ that is not c.e. Later, Arslanov, Lempp, and Shore [Ann. Pure Appl. Logic, 78, Nos. 1-3 (1996), 29—56] formulated the problem of describing pairs of degrees ${\mathbf a}<{\mathbf e}$ such that there exists a $CEA(\mathbf a)$ $2$-c.e. degree ${\mathbf d}\leq{\mathbf e}$ which is not c.e. Since then the question has remained open as to whether a $CEA(\mathbf a)$ degree in the sense of Soare and Stob can be made $2$-c.e. Here we answer this question in the negative, solving it in a stronger formulation: there exists a noncomputable low c.e. degree ${\mathbf a}$ such that any $CEA(\mathbf a)$ $\omega$-c.e. degree is c.e. Also possible generalizations of the result obtained are discussed, as well as various issues associated with the problem mentioned.
Keywords: $cEA$-hierarchy, ershov hierarchy, turing degree.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-14384
075-02-2024-1438
Russian Science Foundation 18-11-00028
(I. I. Batyrshin) Supported by Russian Science Foundation (project No. 18-11-00028, https://rscf.ru/project/18-11-00028. (M. M. Yamaleev) The work was carried out as part of the developmental program for Scientific-Educational Mathematical Center in Volga Federal District, Agreement No. 075-02-2024-14384.
Received: 03.12.2024
Revised: 11.04.2025
English version:
Algebra and Logic, 2024, Volume 63, Issue 3, Pages 164–178
DOI: https://doi.org/10.1007/s10469-025-09780-7
Document Type: Article
UDC: 510.535
Language: Russian
Citation: M. M. Arslanov, I. I. Batyrshin, M. M. Yamaleev, “$CEA$-operators and the Ershov hierarchy. I”, Algebra Logika, 63:3 (2024), 248–270; Algebra and Logic, 63:3 (2024), 164–178
Citation in format AMSBIB
\Bibitem{ArsBatYam24}
\by M.~M.~Arslanov, I.~I.~Batyrshin, M.~M.~Yamaleev
\paper $CEA$-operators and the Ershov hierarchy. I
\jour Algebra Logika
\yr 2024
\vol 63
\issue 3
\pages 248--270
\mathnet{http://mi.mathnet.ru/al2805}
\transl
\jour Algebra and Logic
\yr 2024
\vol 63
\issue 3
\pages 164--178
\crossref{https://doi.org/10.1007/s10469-025-09780-7}
Linking options:
  • https://www.mathnet.ru/eng/al2805
  • https://www.mathnet.ru/eng/al/v63/i3/p248
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025