Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2007, Volume 46, Number 4, Pages 407–427 (Mi al305)  

This article is cited in 1 scientific paper (total in 1 paper)

The quasivariety generated by a torsion-free Abelian-by-finite group

A. I. Budkin
Full-text PDF (227 kB) Citations (1)
References:
Abstract: Let $L_q(qG)$ be the quasivariety lattice contained in a quasivariety generated by a group $G$. It is proved that if $G$ is a finitely generated torsion-free group in $\mathcal A\mathcal B_{2^n}$ (i.e., $G$ is an extension of an Abelian group by a group of exponent $2^n$), which is a split extension of an Abelian group by a cyclic group, then the lattice $L_q(qG)$ is a finite chain.
Keywords: quasivariety, quasivariety lattice, metabelian group.
Received: 14.11.2006
English version:
Algebra and Logic, 2007, Volume 46, Issue 4, Pages 219–230
DOI: https://doi.org/10.1007/s10469-007-0021-3
Bibliographic databases:
UDC: 512.54.01
Language: Russian
Citation: A. I. Budkin, “The quasivariety generated by a torsion-free Abelian-by-finite group”, Algebra Logika, 46:4 (2007), 407–427; Algebra and Logic, 46:4 (2007), 219–230
Citation in format AMSBIB
\Bibitem{Bud07}
\by A.~I.~Budkin
\paper The quasivariety generated by a~torsion-free Abelian-by-finite group
\jour Algebra Logika
\yr 2007
\vol 46
\issue 4
\pages 407--427
\mathnet{http://mi.mathnet.ru/al305}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2363551}
\zmath{https://zbmath.org/?q=an:1155.20026}
\transl
\jour Algebra and Logic
\yr 2007
\vol 46
\issue 4
\pages 219--230
\crossref{https://doi.org/10.1007/s10469-007-0021-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255038000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548747587}
Linking options:
  • https://www.mathnet.ru/eng/al305
  • https://www.mathnet.ru/eng/al/v46/i4/p407
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025