|
This article is cited in 6 scientific papers (total in 6 papers)
Complex algebras of subalgebras
K. V. Adarichevaa, A. Pilitowskab, D. Stanovskýc a Harold Washington College
b Warsaw University of Technology
c Charles University
Abstract:
Let $\mathcal V$ be a variety of algebras. We specify a condition (the so-called generalized entropic property), which is equivalent to the fact that for every algebra $\mathbf A\in\mathcal V$, the set of all subalgebras of $\mathbf A$ is a subuniverse of the complex algebra of the subalgebras of $\mathbf A$. The relationship between the generalized entropic property and the entropic law is investigated. Also, for varieties with the generalized entropic property, we consider identities that are satisfied by complex algebras of subalgebras.
Keywords:
complex algebra, complex algebra of subalgebras, mode, entropic law, mediality, linear identity.
Received: 09.10.2007 Revised: 02.06.2008
Citation:
K. V. Adaricheva, A. Pilitowska, D. Stanovský, “Complex algebras of subalgebras”, Algebra Logika, 47:6 (2008), 655–686; Algebra and Logic, 47:6 (2008), 367–383
Linking options:
https://www.mathnet.ru/eng/al381 https://www.mathnet.ru/eng/al/v47/i6/p655
|
|