Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find







Algebra i logika, 2009, Volume 48, Number 3, Pages 400–414 (Mi al405)  

This article is cited in 2 scientific papers (total in 2 papers)

Table admissible inference rules

V. V. Rimatskii

Chair of High Mathematics, Institute of Architecture and Construction, Siberian Federal University, Krasnoyarsk, RUSSIA
References:
Abstract: A recursive basis of inference rules is described which are instantaneously admissible in all table (residually finite) logics extending one of the logics $\mathrm{Int}$ and $Grz$. A rather simple semantic criterion is derived to determine whether a given inference rule is admissible in all table superintuitionistic logics, and the relationship is established between admissibility of a rule in all table (residually finite) superintuitionistic logics and its truth values in $\mathrm{Int}$.
Keywords: inference rules, table logic, superintuitionistic logic.
Received: 10.05.2007
English version:
Algebra and Logic, 2009, Volume 48, Issue 3, Pages 228–236
DOI: https://doi.org/10.1007/s10469-009-9055-z
Bibliographic databases:
UDC: 510.643
Language: Russian
Citation: V. V. Rimatskii, “Table admissible inference rules”, Algebra Logika, 48:3 (2009), 400–414; Algebra and Logic, 48:3 (2009), 228–236
Citation in format AMSBIB
\Bibitem{Rim09}
\by V.~V.~Rimatskii
\paper Table admissible inference rules
\jour Algebra Logika
\yr 2009
\vol 48
\issue 3
\pages 400--414
\mathnet{http://mi.mathnet.ru/al405}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2573026}
\zmath{https://zbmath.org/?q=an:1241.03034}
\elib{https://elibrary.ru/item.asp?id=12566780}
\transl
\jour Algebra and Logic
\yr 2009
\vol 48
\issue 3
\pages 228--236
\crossref{https://doi.org/10.1007/s10469-009-9055-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268053600005}
\elib{https://elibrary.ru/item.asp?id=15298153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70449521172}
Linking options:
  • https://www.mathnet.ru/eng/al405
  • https://www.mathnet.ru/eng/al/v48/i3/p400
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :221
    References:78
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025