Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2012, Volume 51, Number 3, Pages 297–320 (Mi al536)  

This article is cited in 12 scientific papers (total in 12 papers)

Ideal representations of Reed–Solomon and Reed–Muller codes

E. Couseloa, S. Gonzáleza, V. T. Markovb, C. Martíneza, A. A. Nechaevc

a University of Oviedo, Oviedo, Spain
b Moscow State University, Moscow, Russia
c Moscow State University, Moscow, Russia
References:
Abstract: Reed–Solomon codes and Reed–Muller codes are represented as ideals of the group ring $S=QH$ of an elementary Abelian $p$-group $H$ over a finite field $Q=\mathbb F_q$ of characteristic $p$. Such representations of these codes are already known. Our technique differs from the previously used method in the following. There, the codes in question are represented as kernels of some homomorphisms; in other words, the codes are defined by some kind of parity check relation. Here, we explicitly specify generators for the ideals presenting the codes. In this case Reed–Muller codes are obtained by applying the trace function to some sums of one-dimensional subspaces of $_QS$ in a fixed set of $q$ such subspaces, whose sums also present Reed–Solomon codes.
Keywords: Reed–Muller codes, Reed–Solomon codes, group ring, elementary Abelian $p$-group.
Received: 01.02.2012
Revised: 18.04.2012
English version:
Algebra and Logic, 2012, Volume 51, Issue 3, Pages 195–212
DOI: https://doi.org/10.1007/s10469-012-9183-8
Bibliographic databases:
Document Type: Article
UDC: 519.725+512.552.7
Language: Russian
Citation: E. Couselo, S. González, V. T. Markov, C. Martínez, A. A. Nechaev, “Ideal representations of Reed–Solomon and Reed–Muller codes”, Algebra Logika, 51:3 (2012), 297–320; Algebra and Logic, 51:3 (2012), 195–212
Citation in format AMSBIB
\Bibitem{CouGonMar12}
\by E.~Couselo, S.~Gonz\'alez, V.~T.~Markov, C.~Mart{\'\i}nez, A.~A.~Nechaev
\paper Ideal representations of Reed--Solomon and Reed--Muller codes
\jour Algebra Logika
\yr 2012
\vol 51
\issue 3
\pages 297--320
\mathnet{http://mi.mathnet.ru/al536}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3013906}
\zmath{https://zbmath.org/?q=an:06121536}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 3
\pages 195--212
\crossref{https://doi.org/10.1007/s10469-012-9183-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309471100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866148448}
Linking options:
  • https://www.mathnet.ru/eng/al536
  • https://www.mathnet.ru/eng/al/v51/i3/p297
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025