Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find







Algebra i logika, 2012, Volume 51, Number 6, Pages 734–747 (Mi al561)  

Arrangement of normal subgroups in ordered groups

V. M. Kopytov

Novosibirsk, Russia
References:
Abstract: We look into the problem of determining the arrangement of normal (not necessarily relatively complex) subgroups $A$ of an l.o. group $G$ with respect to a system $\mathfrak L(G)$ of convex subgroups and describing the structure of quotient groups $G/A$ with the aid of notions of the theory of l.o. groups. A characterization of quotient groups is obtained for groups possessing an infrainvariant system of subgroups. For the class of l.o. groups, as well as for certain of the classes close to it, answers to some known particular questions have been found.
Keywords: linearly ordered group, normal subgroup, quotient group, infrainvariant system of subgroups.
Received: 15.01.2012
Revised: 28.11.2012
English version:
Algebra and Logic, 2013, Volume 51, Issue 6, Pages 487–495
DOI: https://doi.org/10.1007/s10469-013-9208-y
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. M. Kopytov, “Arrangement of normal subgroups in ordered groups”, Algebra Logika, 51:6 (2012), 734–747; Algebra and Logic, 51:6 (2013), 487–495
Citation in format AMSBIB
\Bibitem{Kop12}
\by V.~M.~Kopytov
\paper Arrangement of normal subgroups in ordered groups
\jour Algebra Logika
\yr 2012
\vol 51
\issue 6
\pages 734--747
\mathnet{http://mi.mathnet.ru/al561}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3088139}
\zmath{https://zbmath.org/?q=an:06189473}
\transl
\jour Algebra and Logic
\yr 2013
\vol 51
\issue 6
\pages 487--495
\crossref{https://doi.org/10.1007/s10469-013-9208-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316014000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880702954}
Linking options:
  • https://www.mathnet.ru/eng/al561
  • https://www.mathnet.ru/eng/al/v51/i6/p734
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :96
    References:110
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025