Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 6, Pages 769–799
DOI: https://doi.org/10.17377/alglog.2016.55.606
(Mi al774)
 

This article is cited in 3 scientific papers (total in 3 papers)

Generalized hyperarithmetical computability over structures

A. I. Stukachevab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (269 kB) Citations (3)
References:
Abstract: We consider the class of approximation spaces generated by admissible sets and, in particular, by hereditarily finite superstructures over structures. Generalized computability on approximation spaces is conceived of as effective definability in dynamic logic. By analogy with the notion of a structure $\Sigma$-definable in an admissible set, we introduce the notion of a structure effectively definable on an approximation space. In much the same way as the $\Sigma$-reducibility relation, we can naturally define a reducibility relation on structures generating appropriate semilattices of degrees of structures (of arbitrary cardinality), as well as a jump operation. It is stated that there is a natural embedding of the semilattice of hyperdegrees of sets of natural numbers in the semilattices mentioned, which preserves the hyperjump operation. A syntactic description of structures having hyperdegree is given.
Keywords: computability theory, admissible sets, approximation spaces, constructive models, computable analysis, hyperarithmetical computability.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05114-a
Ministry of Education and Science of the Russian Federation НШ-6848.2016.1
Supported by RFBR (project No. 15-01-05114-a) and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-6848.2016.1).
Received: 13.04.2015
Revised: 07.11.2016
English version:
Algebra and Logic, 2017, Volume 55, Issue 6, Pages 507–526
DOI: https://doi.org/10.1007/s10469-017-9421-1
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: A. I. Stukachev, “Generalized hyperarithmetical computability over structures”, Algebra Logika, 55:6 (2016), 769–799; Algebra and Logic, 55:6 (2017), 507–526
Citation in format AMSBIB
\Bibitem{Stu16}
\by A.~I.~Stukachev
\paper Generalized hyperarithmetical computability over structures
\jour Algebra Logika
\yr 2016
\vol 55
\issue 6
\pages 769--799
\mathnet{http://mi.mathnet.ru/al774}
\crossref{https://doi.org/10.17377/alglog.2016.55.606}
\transl
\jour Algebra and Logic
\yr 2017
\vol 55
\issue 6
\pages 507--526
\crossref{https://doi.org/10.1007/s10469-017-9421-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396462200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014996007}
Linking options:
  • https://www.mathnet.ru/eng/al774
  • https://www.mathnet.ru/eng/al/v55/i6/p769
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025