Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2007, Volume 46, Number 1, Pages 46–59 (Mi al8)  

This article is cited in 21 scientific papers (total in 21 papers)

The property of being equationally Noetherian for some soluble groups

Ch. K. Guptaa, N. S. Romanovskiib

a University of Manitoba
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $\mathfrak B$ be a class of groups $A$ which are soluble, equationally Noetherian, and have a central series
$$ A=A_1\geqslant A_2 \geqslant\ldots A_n\geqslant\ldots $$
such that $\bigcap A_n=1$ and all factors $A_n/A_{n+1}$ are torsion-free groups; $D$ is a direct product of finitely many cyclic groups of infinite or prime orders. We prove that the wreath product $D\wr A$ is an equationally Noetherian group. As a consequence we show that free soluble groups of arbitrary derived lengths and ranks are equationally Noetherian.
Keywords: equationally Noetherian group, free soluble group.
Received: 30.05.2006
English version:
Algebra and Logic, 2007, Volume 46, Issue 1, Pages 28–36
DOI: https://doi.org/10.1007/s10469-007-0003-5
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: Ch. K. Gupta, N. S. Romanovskii, “The property of being equationally Noetherian for some soluble groups”, Algebra Logika, 46:1 (2007), 46–59; Algebra and Logic, 46:1 (2007), 28–36
Citation in format AMSBIB
\Bibitem{GupRom07}
\by Ch.~K.~Gupta, N.~S.~Romanovskii
\paper The property of being equationally Noetherian for some soluble groups
\jour Algebra Logika
\yr 2007
\vol 46
\issue 1
\pages 46--59
\mathnet{http://mi.mathnet.ru/al8}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2321079}
\zmath{https://zbmath.org/?q=an:1156.20032}
\transl
\jour Algebra and Logic
\yr 2007
\vol 46
\issue 1
\pages 28--36
\crossref{https://doi.org/10.1007/s10469-007-0003-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255037700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33847638441}
Linking options:
  • https://www.mathnet.ru/eng/al8
  • https://www.mathnet.ru/eng/al/v46/i1/p46
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025