Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2017, Volume 56, Number 5, Pages 582–592
DOI: https://doi.org/10.17377/alglog.2017.56.504
(Mi al817)
 

Hyperidentities of quasilinear clones containing creative functions

I. A. Mal'tsevab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
References:
Abstract: We consider the possibility for separating by hyperidentities clones of quasilinear functions defined on the set $\{0,1,2\}$ with values in the set $\{0,1\}$. It is proved that every creative clone of this kind can be separated by a hyperidentity from any noncreative clone comparable with it.
Keywords: hyperidentity, clone, clone identity, preiterative algebra, separating formula, quasilinear function.
Received: 05.12.2016
English version:
Algebra and Logic, 2017, Volume 56, Issue 5, Pages 386–394
DOI: https://doi.org/10.1007/s10469-017-9460-7
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: I. A. Mal'tsev, “Hyperidentities of quasilinear clones containing creative functions”, Algebra Logika, 56:5 (2017), 582–592; Algebra and Logic, 56:5 (2017), 386–394
Citation in format AMSBIB
\Bibitem{Mal17}
\by I.~A.~Mal'tsev
\paper Hyperidentities of quasilinear clones containing creative functions
\jour Algebra Logika
\yr 2017
\vol 56
\issue 5
\pages 582--592
\mathnet{http://mi.mathnet.ru/al817}
\crossref{https://doi.org/10.17377/alglog.2017.56.504}
\transl
\jour Algebra and Logic
\yr 2017
\vol 56
\issue 5
\pages 386--394
\crossref{https://doi.org/10.1007/s10469-017-9460-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416984900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85035804962}
Linking options:
  • https://www.mathnet.ru/eng/al817
  • https://www.mathnet.ru/eng/al/v56/i5/p582
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :61
    References:77
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025