Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2023, Issue 2, Pages 122–149
DOI: https://doi.org/10.31857/S0005231023020071
(Mi at15601)
 

Stochastic Systems

Optimal recovery of a square integrable function from its observations with Gaussian errors

S. A. Bulgakov, V. M. Khametov

National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: This paper is devoted to the mean-square optimal stochastic recovery of a square integrable function with respect to the Lebesgue measure defined on a finite-dimensional compact set. We justify an optimal recovery procedure for such a function observed at each point of its compact domain with Gaussian errors. The existence of the optimal stochastic recovery procedure as well as its unbiasedness and consistency are established. In addition, we propose and justify a near-optimal stochastic recovery procedure in order to: (i) estimate the dependence of the standard deviation on the number of orthogonal functions and the number of observations and (ii) find the number of orthogonal functions that minimizes the standard deviation.
Keywords: orthogonal functions, Fourier coefficients, observation error, projection estimator, unbiasedness, consistency.
Presented by the member of Editorial Board: O. N. Granichin

Received: 09.11.2020
Revised: 09.08.2022
Accepted: 29.09.2022
English version:
Automation and Remote Control, 2023, Volume 84, Issue 4, Pages 369–388
DOI: https://doi.org/10.1134/S0005117923040033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Bulgakov, V. M. Khametov, “Optimal recovery of a square integrable function from its observations with Gaussian errors”, Avtomat. i Telemekh., 2023, no. 2, 122–149; Autom. Remote Control, 84:4 (2023), 369–388
Citation in format AMSBIB
\Bibitem{BulKha23}
\by S.~A.~Bulgakov, V.~M.~Khametov
\paper Optimal recovery of a square integrable function from its observations with Gaussian errors
\jour Avtomat. i Telemekh.
\yr 2023
\issue 2
\pages 122--149
\mathnet{http://mi.mathnet.ru/at15601}
\crossref{https://doi.org/10.31857/S0005231023020071}
\edn{https://elibrary.ru/ONSJBQ}
\transl
\jour Autom. Remote Control
\yr 2023
\vol 84
\issue 4
\pages 369--388
\crossref{https://doi.org/10.1134/S0005117923040033}
Linking options:
  • https://www.mathnet.ru/eng/at15601
  • https://www.mathnet.ru/eng/at/y2023/i2/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025