Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2024, Issue 2, Pages 21–45
DOI: https://doi.org/10.31857/S0005231024020027
(Mi at16044)
 

This article is cited in 1 scientific paper (total in 1 paper)

Nonlinear Systems

On border-collision bifurcations in a pulse system

Zh. T. Zhusubalieva, D. V. Titova, O. O. Yanochkinaa, U. A. Sopuevb

a Southwest State University, Kursk
b Osh State University
References:
Abstract: Considering a piecewise smooth map describing the behavior of a pulse-modulated control system, we discuss border-collision related phenomena. We show that in the parameter space which corresponds to the domain of oscillatory mode a mapping is piecewise linear continuous. It is well known that in piecewise linear maps, classical bifurcations, for example, period doubling, tangent, fold bifurcations become degenerate (“degenerate bifurcations”), combining the properties of both smooth and border-collision bifurcations. We found unusual properties of this map, that consist in the fact that border-collision bifurcations of codimension one, including degenerate ones, occur when a pair of points of a periodic orbit simultaneously collides with two switching manifolds. This paper also discuss bifurcations of chaotic attractors such as merging and expansion (“interior”) crises, associated with homoclinic bifurcations of unstable periodic orbits.
Keywords: pulse system, differential equations with a discontinuous right-hand side, bimodal piecewise linear mapping, border-collision bifurcations, degenerate bifurcations, merging and expansion bifurcations, chaotic oscillations.
Presented by the member of Editorial Board: A. L. Fradkov

Received: 26.09.2022
Revised: 07.12.2023
Accepted: 30.12.2023
English version:
Automation and Remote Control, 2024, Volume 85, Issue 2, Pages 103–122
DOI: https://doi.org/10.1134/S0005117924020115
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Zh. T. Zhusubaliev, D. V. Titov, O. O. Yanochkina, U. A. Sopuev, “On border-collision bifurcations in a pulse system”, Avtomat. i Telemekh., 2024, no. 2, 21–45; Autom. Remote Control, 85:2 (2024), 103–122
Citation in format AMSBIB
\Bibitem{ZhuTitYan24}
\by Zh.~T.~Zhusubaliev, D.~V.~Titov, O.~O.~Yanochkina, U.~A.~Sopuev
\paper On border-collision bifurcations in a pulse system
\jour Avtomat. i Telemekh.
\yr 2024
\issue 2
\pages 21--45
\mathnet{http://mi.mathnet.ru/at16044}
\crossref{https://doi.org/10.31857/S0005231024020027}
\edn{https://elibrary.ru/UMFZYH}
\transl
\jour Autom. Remote Control
\yr 2024
\vol 85
\issue 2
\pages 103--122
\crossref{https://doi.org/10.1134/S0005117924020115}
Linking options:
  • https://www.mathnet.ru/eng/at16044
  • https://www.mathnet.ru/eng/at/y2024/i2/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025