Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2024, Issue 5, Pages 58–85
DOI: https://doi.org/10.31857/S0005231024050024
(Mi at16372)
 

This article is cited in 2 scientific papers (total in 2 papers)

Topical issue

On some problems with multivalued mappings

M. V. Balashova, K. Z. Biglova, A. A. Trembaab

a V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
References:
Abstract: We consider some problems with a set-valued mapping, which can be reduced to minimization of a homogeneous Lipschitz function on the unit sphere. Latter problem can be solved in some cases with a first order algorithm—the gradient projection method. As one of the examples, the case when set-valued mapping is the reachable set of a linear autonomous controlled system is considered. In several settings, the linear convergence is proven. The methods used in proofs follow those introduced by B.T. Polyak for the case where Lezanski–Polyak–Lojasiewicz condition holds. Unlike algorithms that use approximation of the reachable set, the proposed algorithms depend far less on dimension and other parameters of the problem. Efficient error estimation is possible. Numerical experiments confirm the effectiveness of the considered approach. This approach can also be applied to various set-theoretical problems with general set-valued mappings.
Keywords: gradient projection method, set-valued integral, strong convexity, supporting set, Lipschitz condition, nonsmooth analysis.
Funding agency Grant number
Russian Science Foundation 22-11-00042
Presented by the member of Editorial Board: P. S. Shcherbakov

Received: 25.01.2024
Revised: 12.03.2024
Accepted: 20.03.2024
English version:
Automation and Remote Control, 2024, Volume 85, Issue 5, Pages 422–442
DOI: https://doi.org/10.1134/S0005117924050035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Balashov, K. Z. Biglov, A. A. Tremba, “On some problems with multivalued mappings”, Avtomat. i Telemekh., 2024, no. 5, 58–85; Autom. Remote Control, 85:5 (2024), 422–442
Citation in format AMSBIB
\Bibitem{BalBigTre24}
\by M.~V.~Balashov, K.~Z.~Biglov, A.~A.~Tremba
\paper On some problems with multivalued mappings
\jour Avtomat. i Telemekh.
\yr 2024
\issue 5
\pages 58--85
\mathnet{http://mi.mathnet.ru/at16372}
\crossref{https://doi.org/10.31857/S0005231024050024}
\edn{https://elibrary.ru/YQFMTE}
\transl
\jour Autom. Remote Control
\yr 2024
\vol 85
\issue 5
\pages 422--442
\crossref{https://doi.org/10.1134/S0005117924050035}
Linking options:
  • https://www.mathnet.ru/eng/at16372
  • https://www.mathnet.ru/eng/at/y2024/i5/p58
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025