Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 12, Pages 94–109 (Mi at1676)  

This article is cited in 4 scientific papers (total in 4 papers)

Stochastic Systems

Optimal estimation equations for the state vector of a stochastic bilinear system: its bilinear approximation

M. E. Shaikin

Institute of Control Sciences, Russian Academy of Sciences
Full-text PDF (245 kB) Citations (4)
References:
Abstract: A finite-dimensional approximation for the optimal filtrating equations of the class of Markov diffusion processes described by a bilinear stochastic system is derived. The solution of the stochastic system is expressed in terms of the Peano series and its formal algebraic representation. A finite system of equations for the approximate filter is derived as the optimal Stratonovich–Kushner filter for a system with finite Peano series.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 04.09.2003
English version:
Automation and Remote Control, 2004, Volume 65, Issue 12, Pages 1946–1960
DOI: https://doi.org/10.1023/B:AURC.0000049879.83675.c2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. E. Shaikin, “Optimal estimation equations for the state vector of a stochastic bilinear system: its bilinear approximation”, Avtomat. i Telemekh., 2004, no. 12, 94–109; Autom. Remote Control, 65:12 (2004), 1946–1960
Citation in format AMSBIB
\Bibitem{Sha04}
\by M.~E.~Shaikin
\paper Optimal estimation equations for the state vector of a stochastic bilinear system: its bilinear approximation
\jour Avtomat. i Telemekh.
\yr 2004
\issue 12
\pages 94--109
\mathnet{http://mi.mathnet.ru/at1676}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2128194}
\zmath{https://zbmath.org/?q=an:1095.93031}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 12
\pages 1946--1960
\crossref{https://doi.org/10.1023/B:AURC.0000049879.83675.c2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226005300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904240074}
Linking options:
  • https://www.mathnet.ru/eng/at1676
  • https://www.mathnet.ru/eng/at/y2004/i12/p94
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025