Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 12, Pages 129–143 (Mi at1679)  

This article is cited in 11 scientific papers (total in 11 papers)

Adaptive and Robust Systems

Robust stability of linear discrete stationary systems with uncertainty bounded in the anisotropic norm

A. P. Kurdyukova, E. A. Maksimovb

a Institute of Control Sciences, Russian Academy of Sciences
b N. E. Bauman Moscow State Technical University
References:
Abstract: The requirement that uncertainty of the model parameters should be bounded in the anisotropic norm is regarded as one of the possible ways to relax the conditions of the small-gain theorem which guarantee internal stability of the linear stationary system. Within the framework of this approach, an algorithm was proposed to determine that minimum level of anisotropy for which boundedness of the anisotropic norm is the sufficient condition for robustness. This suggests that the plants with uncertain parameters are robust stabilizable.
Presented by the member of Editorial Board: A. V. Nazin

Received: 31.05.2004
English version:
Automation and Remote Control, 2004, Volume 65, Issue 12, Pages 1977–1990
DOI: https://doi.org/10.1023/B:AURC.0000049882.95969.95
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. P. Kurdyukov, E. A. Maksimov, “Robust stability of linear discrete stationary systems with uncertainty bounded in the anisotropic norm”, Avtomat. i Telemekh., 2004, no. 12, 129–143; Autom. Remote Control, 65:12 (2004), 1977–1990
Citation in format AMSBIB
\Bibitem{KurMak04}
\by A.~P.~Kurdyukov, E.~A.~Maksimov
\paper Robust stability of linear discrete stationary systems with uncertainty bounded in the anisotropic norm
\jour Avtomat. i Telemekh.
\yr 2004
\issue 12
\pages 129--143
\mathnet{http://mi.mathnet.ru/at1679}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2128197}
\zmath{https://zbmath.org/?q=an:1095.93024}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 12
\pages 1977--1990
\crossref{https://doi.org/10.1023/B:AURC.0000049882.95969.95}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226005300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904240979}
Linking options:
  • https://www.mathnet.ru/eng/at1679
  • https://www.mathnet.ru/eng/at/y2004/i12/p129
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025