Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 5, Pages 3–16 (Mi at1700)  

This article is cited in 1 scientific paper (total in 1 paper)

Linear Systems

Stability analysis of special polynomials constructed from the classical orthogonal polynomials with provision for parametric uncertainty

Yu. P. Nikolaev

Institute of Electromechanics and Automation, Moscow, Russia
Full-text PDF (277 kB) Citations (1)
References:
Abstract: Consideration was given to the Chebyshev, Hermite, Legendre, and Gegenbauer polynomials. Special polynomials of complex variable were generated from the orthogonal polynomials with the use of the proposed algorithm. For the nominal values of coefficients, stability of the generated polynomials was proved. Simple necessary conditions for robust stability of the general polynomials were derived and used to analyze the impact of the parametric uncertainty on stability of the special polynomials.
Presented by the member of Editorial Board: B. T. Polyak

Received: 03.12.2009
English version:
Automation and Remote Control, 2011, Volume 72, Issue 5, Pages 901–913
DOI: https://doi.org/10.1134/S0005117911050018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. P. Nikolaev, “Stability analysis of special polynomials constructed from the classical orthogonal polynomials with provision for parametric uncertainty”, Avtomat. i Telemekh., 2011, no. 5, 3–16; Autom. Remote Control, 72:5 (2011), 901–913
Citation in format AMSBIB
\Bibitem{Nik11}
\by Yu.~P.~Nikolaev
\paper Stability analysis of special polynomials constructed from the classical orthogonal polynomials with provision for parametric uncertainty
\jour Avtomat. i Telemekh.
\yr 2011
\issue 5
\pages 3--16
\mathnet{http://mi.mathnet.ru/at1700}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2848478}
\zmath{https://zbmath.org/?q=an:1235.33009}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 5
\pages 901--913
\crossref{https://doi.org/10.1134/S0005117911050018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291035300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958174486}
Linking options:
  • https://www.mathnet.ru/eng/at1700
  • https://www.mathnet.ru/eng/at/y2011/i5/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025