Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 5, Pages 127–138 (Mi at1708)  

This article is cited in 10 scientific papers (total in 10 papers)

Stochastic Systems, Queuing Systems

Finding minimax strategy and minimax risk in a random environment (the two-armed bandit problem)

A. V. Kolnogorov

Yaroslav-the-Wise State University, Novgorod, Russia
References:
Abstract: Minimax strategy and risk in a stationary random environment are found as Bayesian ones corresponding to the worst prior distribution. For environments with normally distributed incomes with unit variance and expectations that depend only on the alternative selected, this distribution can be chosen to be symmetric and asymptotically uniform. This lets one use numerical methods. The results can be used for systems with parallel data processing, in particular, for controlling environments with distributions other than normal.
Presented by the member of Editorial Board: A. V. Nazin

Received: 22.03.2010
English version:
Automation and Remote Control, 2011, Volume 72, Issue 5, Pages 1017–1027
DOI: https://doi.org/10.1134/S0005117911050092
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Kolnogorov, “Finding minimax strategy and minimax risk in a random environment (the two-armed bandit problem)”, Avtomat. i Telemekh., 2011, no. 5, 127–138; Autom. Remote Control, 72:5 (2011), 1017–1027
Citation in format AMSBIB
\Bibitem{Kol11}
\by A.~V.~Kolnogorov
\paper Finding minimax strategy and minimax risk in a~random environment (the two-armed bandit problem)
\jour Avtomat. i Telemekh.
\yr 2011
\issue 5
\pages 127--138
\mathnet{http://mi.mathnet.ru/at1708}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2848726}
\zmath{https://zbmath.org/?q=an:1235.93268}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 5
\pages 1017--1027
\crossref{https://doi.org/10.1134/S0005117911050092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291035300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958170867}
Linking options:
  • https://www.mathnet.ru/eng/at1708
  • https://www.mathnet.ru/eng/at/y2011/i5/p127
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025