Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 1975, Issue 2, Pages 179–181 (Mi at7805)  

Notes

Stability of a second-order nonlinear pulsewidth-modulated system

O. Ya. Karetnyi, V. I. Shiryaev

Chelyabinsk
Abstract: Stability of a nonlinear pulse width modulated system is studied by the direct Lyapunov method on a phase plane. Using the system decomposition into two a Lyapunov function is selected by the shape of one of the parts coinciding with the phase curve equation. A condition for stability in the large of the equilibrium position is, obtained.

Received: 19.11.1973
Bibliographic databases:
Document Type: Article
UDC: 62-503.4
Language: Russian
Citation: O. Ya. Karetnyi, V. I. Shiryaev, “Stability of a second-order nonlinear pulsewidth-modulated system”, Avtomat. i Telemekh., 1975, no. 2, 179–181; Autom. Remote Control, 36:2 (1975), 346–351
Citation in format AMSBIB
\Bibitem{KarShi75}
\by O.~Ya.~Karetnyi, V.~I.~Shiryaev
\paper Stability of a~second-order nonlinear pulsewidth-modulated system
\jour Avtomat. i Telemekh.
\yr 1975
\issue 2
\pages 179--181
\mathnet{http://mi.mathnet.ru/at7805}
\zmath{https://zbmath.org/?q=an:0312.93030}
\transl
\jour Autom. Remote Control
\yr 1975
\vol 36
\issue 2
\pages 346--351
Linking options:
  • https://www.mathnet.ru/eng/at7805
  • https://www.mathnet.ru/eng/at/y1975/i2/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025