|
|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2008, Number 1, Pages 195–204
(Mi basm12)
|
|
|
|
Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces
A. Perjan, Galina Rusu Department of Mathematics and Informatics, Moldova State University
Abstract:
We study the behavior of solutions to the problem
$$
\begin{cases}
\varepsilon\bigl(u_\varepsilon''(t)+A_1u_\varepsilon(t)\bigr)+u_\varepsilon'(t)+A_0u_\varepsilon(t)=f(t), \quad t>0,\\
u_\varepsilon(0)=u_0, \quad u_\varepsilon'=u_1,
\end{cases}
$$
in the Hilbert space $H$ as $\varepsilon\mapsto 0$ where $A_1$ and $A_0$ are two linear selfadjoint operators.
Keywords and phrases:
Singular perturbations, Cauchy problem, boundary function.
Received: 27.12.2007
Citation:
A. Perjan, Galina Rusu, “Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1, 195–204
Linking options:
https://www.mathnet.ru/eng/basm12 https://www.mathnet.ru/eng/basm/y2008/i1/p195
|
| Statistics & downloads: |
| Abstract page: | 369 | | Full-text PDF : | 79 | | References: | 73 | | First page: | 2 |
|