Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2018, Number 2, Pages 101–112 (Mi basm477)  

Research articles

Closure operators in modules and adjoint functors, II

A. I. Kashu

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD-2028, Moldova
References:
Abstract: In this work we study the relations between the closure operators of two module categories connected by two adjoint contravariant functors. The present article is a continuation of the paper [1] (Part I), where the same question is investigated in the case of two adjoint covariant functors.
An arbitrary bimodule $_RU_S$ defines a pair of adjoint contravariant functors $H_1=Hom_R(\text{-},U)\colon R\text{-}\mathrm{Mod}\to\mathrm{Mod}\text{-}S$ and $H_2=Hom_S(\text{-},U)\colon\mathrm{Mod}\text{-}S\to R\text{-}\mathrm{Mod}$ with two associated natural transformations .png and .png. In this situation we study the connections between the closure operators of the categories $R\text{-}\mathrm{Mod}$ and $\mathrm{Mod}\text{-}S$.
Keywords and phrases: category of modules, closure operator, adjoint functors, contravariant functor.
Received: 08.05.2018
Document Type: Article
MSC: 16D90, 16S90, 16A40
Language: English
Citation: A. I. Kashu, “Closure operators in modules and adjoint functors, II”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 2, 101–112
Citation in format AMSBIB
\Bibitem{Kas18}
\by A.~I.~Kashu
\paper Closure operators in modules and adjoint functors,~II
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2018
\issue 2
\pages 101--112
\mathnet{http://mi.mathnet.ru/basm477}
Linking options:
  • https://www.mathnet.ru/eng/basm477
  • https://www.mathnet.ru/eng/basm/y2018/i2/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025