Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, Number 1-2, Pages 84–92 (Mi basm548)  

On non-discrete topologization of some countable skew fields

V. I. Arnautova, G. N. Ermakovab

a Institute of Mathematics and Computer Science, Chişinău, Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000 Moldova
References:
Abstract: If for any finite subset $M$ of a countable skew field $ R $ there exists an infinite subset $ S\subseteq R $ such that $r\cdot m=m\cdot r$ for any $r\in S $ and for any $m\in M$, then the skew field $ R $ admits:
– A non-discrete Hausdorff skew field topology $ \tau _0 $.
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than the topology $ \tau _0 $ and such that $ \sup \{\tau _1, \tau _2 \} $ is the discrete topology for any different topologies $ \tau_1$ and $\tau _2 $;
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than $ \tau _0 $ and such that any two of these topologies are comparable;
– Two to the power of continuum Hausdorff skew field topologies stronger than $ \tau _0 $, and each of them is a coatom in the lattice of all skew field topologies of the skew fields.
Keywords and phrases: countable skew fields, center of skew field, topological skew fields, Hausdorff topology, basis of the filter of neighborhoods, number of topologies on countable skew fields, lattice of topologies on skew fields, right Ore condition, ring of right quotients, ring of polynomials in the variable $x$.
Received: 22.11.2020
Document Type: Article
MSC: 22A05
Language: English
Citation: V. I. Arnautov, G. N. Ermakova, “On non-discrete topologization of some countable skew fields”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2, 84–92
Citation in format AMSBIB
\Bibitem{ArnErm21}
\by V.~I.~Arnautov, G.~N.~Ermakova
\paper On non-discrete topologization of some countable skew fields
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2021
\issue 1-2
\pages 84--92
\mathnet{http://mi.mathnet.ru/basm548}
Linking options:
  • https://www.mathnet.ru/eng/basm548
  • https://www.mathnet.ru/eng/basm/y2021/i1/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :107
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025