Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, Number 1-2, Pages 121–136 (Mi basm552)  

Postoptimal analysis of a finite cooperative game

Vladimir Emelicheva, Olga Karelkinab

a Belarusian State University, ave. Independence, 4, Minsk 220030, Belarus
b Systems Research Institute, PAN, Newelska, 6, Warsaw 01-447, Poland
References:
Abstract: We consider a finite cooperative game of several players with parameterized concept of equilibrium (optimality principles), when relations between players in coalition are based on the Pareto maximum. Introduction of this optimality principle allows to connect classical notions of the Pareto optimality and Nash equilibrium. Lower and upper bounds are obtained for the strong stability radius of the game under parameters perturbations with the assumption that arbitrary Hölder norms are defined in the space of outcomes and criteria space. Game classes with an infinite radius are defined.
Keywords and phrases: multiple criteria, strong stability radius, parametric optimality, Nash equilibrium, Pareto optimality, Hölder norm.
Received: 13.04.2021
Document Type: Article
MSC: 90C10, 90C29
Language: English
Citation: Vladimir Emelichev, Olga Karelkina, “Postoptimal analysis of a finite cooperative game”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2, 121–136
Citation in format AMSBIB
\Bibitem{EmeKar21}
\by Vladimir~Emelichev, Olga~Karelkina
\paper Postoptimal analysis of a finite cooperative game
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2021
\issue 1-2
\pages 121--136
\mathnet{http://mi.mathnet.ru/basm552}
Linking options:
  • https://www.mathnet.ru/eng/basm552
  • https://www.mathnet.ru/eng/basm/y2021/i1/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025