Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, Number 3, Pages 3–14
DOI: https://doi.org/10.56415/basm.y2022.i3.p3
(Mi basm576)
 

Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces

J. Ettayb

Department of Mathematics, Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fès, Morocco
References:
Abstract: In this paper, we extend the Volkenborn integral and Shnirelman integral for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces over $\mathbb{Q}_{p}$ and $\mathbb{C}_{p}$ respectively. When the ground field is a complete non-Archimedean valued field, which is also algebraically closed, we give some functional calculus for groups of infinitesimal generator $A$ such that $A$ is a nilpotent operator on finite-dimensional non-Archimedean Banach spaces.
Keywords and phrases: Volkenborn integral, Shnirelman integral, groups of bounded linear operators, $p$-adic theory.
Received: 06.04.2022
Bibliographic databases:
Document Type: Article
MSC: 47D03, 47S10, 46S10
Language: English
Citation: J. Ettayb, “Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 3, 3–14
Citation in format AMSBIB
\Bibitem{Ett22}
\by J.~Ettayb
\paper Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2022
\issue 3
\pages 3--14
\mathnet{http://mi.mathnet.ru/basm576}
\crossref{https://doi.org/10.56415/basm.y2022.i3.p3}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4595152}
Linking options:
  • https://www.mathnet.ru/eng/basm576
  • https://www.mathnet.ru/eng/basm/y2022/i3/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025