Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, Number 3, Pages 15–21
DOI: https://doi.org/10.56415/basm.y2022.i3.p15
(Mi basm577)
 

This article is cited in 1 scientific paper (total in 1 paper)

A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations

Ahmed Chaouki Aouine

Mohamed-Cherif Messaadia University Souk Ahras, 41000, Algeria
Full-text PDF (174 kB) Citations (1)
References:
Abstract: In this paper, we prove a fixed point theorem for $p$-contraction mappings in partially ordered metric spaces. As an application, we investigate the possibility of optimally controlling the solution of the ordinary differential equations.
Keywords and phrases: fixed point, $p$-contraction type maps, partially ordered metric spaces, ordinary differential equation.
Received: 15.04.2022
Bibliographic databases:
Document Type: Article
MSC: 47H10, 54H25
Language: English
Citation: Ahmed Chaouki Aouine, “A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 3, 15–21
Citation in format AMSBIB
\Bibitem{Aou22}
\by Ahmed~Chaouki~Aouine
\paper A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2022
\issue 3
\pages 15--21
\mathnet{http://mi.mathnet.ru/basm577}
\crossref{https://doi.org/10.56415/basm.y2022.i3.p15}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4595153}
Linking options:
  • https://www.mathnet.ru/eng/basm577
  • https://www.mathnet.ru/eng/basm/y2022/i3/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025