Journal of the Belarusian State University. Mathematics and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Journal of the Belarusian State University. Mathematics and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of the Belarusian State University. Mathematics and Informatics, 2018, Volume 2, Pages 47–57 (Mi bgumi6)  

Theory of probability and Mathematical statistics

Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data

M. K. Dauhaliovaa, Yu. S. Kharinab

a Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
b Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
References:
Abstract: The binomial conditionally autoregressive model of discrete spatio-temporal data is considered in this paper. This model is a multidimensional inhomogeneous Markov chain with a finite state space. Conditions, under which the binomial conditionally autoregressive model satisfies the ergodic principle, are found in case when exogenous factors depend on time. The maximum likelihood approach is used for statistical estimation of model parameters. It is proved that the constructed maximum likelihood estimators are consistent and asymptotically normal distributed for any bounded values of the model parameters and any bounded values of the exogenous factor in case of statistical identifiability of model parameters. Results of computer experiments on simulated data illustrate consistency of maximum likelihood estimators.
Keywords: spatio-temporal data, inhomogeneous Markov chain, ergodic principle, maximum likelihood estimator, consistency of estimator, asymptotic normality.
Received: 07.02.2018
Document Type: Article
UDC: 519.2
Language: Russian
Citation: M. K. Dauhaliova, Yu. S. Kharin, “Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2018), 47–57
Citation in format AMSBIB
\Bibitem{DauKha18}
\by M.~K.~Dauhaliova, Yu.~S.~Kharin
\paper Asymptotic analysis of statistical estimators of parameters for binomial conditionally autoregressive model of spatio-temporal data
\jour Journal of the Belarusian State University. Mathematics and Informatics
\yr 2018
\vol 2
\pages 47--57
\mathnet{http://mi.mathnet.ru/bgumi6}
Linking options:
  • https://www.mathnet.ru/eng/bgumi6
  • https://www.mathnet.ru/eng/bgumi/v2/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of the Belarusian State University. Mathematics and Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025