|
Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 484–489 DOI: https://doi.org/10.22405/2226-8383-2018-22-2-484-489
(Mi cheb1047)
|
|
|
|
BRIEF MESSAGE
Note on a theorem of Davenport
Ke Gong Henan University (Kaifeng, P. R. China)
DOI:
https://doi.org/10.22405/2226-8383-2018-22-2-484-489
Abstract:
Let $\Lambda$ be a $n$-dimensional lattice, and $c_1,\ldots,c_{n-1}$ be any $n-1$ vectors in $n$-dimensional real Euclidean space. We show that there exists a basis $\alpha_1,\ldots,\alpha_n$ of $\mathsf\Lambda$ such that $$ |\alpha_i-Nc_i|=O(\log^2N),\leqslant (1\leqslant i\leqslant n-1) $$ holds for any real number $N\ge 2$, where the constant implied by the $O$ symbol depends only on $\Lambda$ and $c_1,\ldots,c_{n-1}$.
Keywords:
Lattice, basis, approximation, combinatorial sieve.
Citation:
Ke Gong, “Note on a theorem of Davenport”, Chebyshevskii Sb., 22:2 (2021), 484–489
Linking options:
https://www.mathnet.ru/eng/cheb1047 https://www.mathnet.ru/eng/cheb/v22/i2/p484
|
|