Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 484–489
DOI: https://doi.org/10.22405/2226-8383-2018-22-2-484-489
(Mi cheb1047)
 

BRIEF MESSAGE

Note on a theorem of Davenport

Ke Gong

Henan University (Kaifeng, P. R. China)
References:
DOI: https://doi.org/10.22405/2226-8383-2018-22-2-484-489
Abstract: Let $\Lambda$ be a $n$-dimensional lattice, and $c_1,\ldots,c_{n-1}$ be any $n-1$ vectors in $n$-dimensional real Euclidean space. We show that there exists a basis $\alpha_1,\ldots,\alpha_n$ of $\mathsf\Lambda$ such that
$$ |\alpha_i-Nc_i|=O(\log^2N),\leqslant (1\leqslant i\leqslant n-1) $$
holds for any real number $N\ge 2$, where the constant implied by the $O$ symbol depends only on $\Lambda$ and $c_1,\ldots,c_{n-1}$.
Keywords: Lattice, basis, approximation, combinatorial sieve.
Funding agency Grant number
National Natural Science Foundation of China 11671119
This work was supported by NSFC grant 11671119.
Document Type: Article
UDC: 511
Language: English
Citation: Ke Gong, “Note on a theorem of Davenport”, Chebyshevskii Sb., 22:2 (2021), 484–489
Citation in format AMSBIB
\Bibitem{Gon21}
\by Ke~Gong
\paper Note on a theorem of Davenport
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 2
\pages 484--489
\mathnet{http://mi.mathnet.ru/cheb1047}
Linking options:
  • https://www.mathnet.ru/eng/cheb1047
  • https://www.mathnet.ru/eng/cheb/v22/i2/p484
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025