|
Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 510–518 DOI: https://doi.org/10.22405/2226-8383-2018-22-2-510-518
(Mi cheb1050)
|
|
|
|
BRIEF MESSAGE
Symmetries of Einstein–Weyl manifolds with boundary
R. Mohseni Jagiellonian University, Institute of Mathematics (Krakow, Poland)
DOI:
https://doi.org/10.22405/2226-8383-2018-22-2-510-518
Abstract:
Starting from a real analytic surface $\mathcal{M}$ with a real analytic conformal Cartan connection A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold with $\mathcal{M}$ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on $\mathcal{M}$ can be extended to symmetries of the obtained Einstein–Weyl manifold.
Keywords:
einstein–Weyl manifold, symmetries, minitwistor space, conformal Cartan connection.
Citation:
R. Mohseni, “Symmetries of Einstein–Weyl manifolds with boundary”, Chebyshevskii Sb., 22:2 (2021), 510–518
Linking options:
https://www.mathnet.ru/eng/cheb1050 https://www.mathnet.ru/eng/cheb/v22/i2/p510
|
|