|
Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 536–542 DOI: https://doi.org/10.22405/2226-8383-2018-22-2-536--1
(Mi cheb1053)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
BRIEF MESSAGE
Values of hypergeometric $F$-series at polyadic Liouvillea points
E. Yu. Yudenkovaab a Russian Presidential Academy of National Economy and Public Administration (Moscow)
b Moscow Pedagogical State University (Moscow)
DOI:
https://doi.org/10.22405/2226-8383-2018-22-2-536--1
Abstract:
This paper proves infinite algebraic independence of the values of hypergeometric $F$ – series at polyadic Liouville points. Hypergeometric functions are defined for $|z| < 1 $ by the power series: $$ \sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{r}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n} n !} z^{n}. $$ $F$ – series have form $f_n = \sum_{n=0}^{\infty}a_n n! z^n$ whose coefficients $a_n$ satisfy some arithmetic properties. These series converge in the field $\mathbb{Q}_p$ of $p$ – adic numbers and their algebraic extensions $\mathbb{K}_v$. Polyadic number is a series of the form $\sum_{n=0}^{\infty} a_nn!, a_n \in \mathbb{Z}$. Liouville number is a real number x with the property that, for every positive integer n, there exist infinitely many pairs of integers $(p, q)$ with $q > 1$ such that $0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n}. $ The polyadic Liouville number $\alpha$ has the property that for any numbers $P, D$ there exists an integer $|A|$ such that for all primes $p \leq P$ the inequality $|\alpha - A|_p < A^{-D}. $
Keywords:
hypergeometric $F$-series, polyadic Liouville numbers.
Citation:
E. Yu. Yudenkova, “Values of hypergeometric $F$-series at polyadic Liouvillea points”, Chebyshevskii Sb., 22:2 (2021), 536–542
Linking options:
https://www.mathnet.ru/eng/cheb1053 https://www.mathnet.ru/eng/cheb/v22/i2/p536
|
|